100% ENGLISH 1 OR 2 YEARS **FULL-TIME** ## MASTER OF SCIENCE IN AEROSPACE PROPULSION ### BECOME A KEY PLAYER IN AEROSPACE INNOVATION! IPSA prepares you to be a bold, creative, and innovative graduate ready to make a difference in the aerospace propulsion sector. Our MSc program immerses you in the most exciting technical challenges, equipping you with the tools to tackle them head-on. Join us to transform your ideas into real-world solutions in an increasingly competitive and climate-conscious landscape. **Aerospace propulsion Expert** Aerospace propulsion Project manager **Aerospace propulsion Design Offices** Aerospace propulsion Testing In start-ups, labs or major groups (SAFRAN, etc.) Application by email to HYPERLINK freemover@ipsa.fr Transcripts of the full bachelor's degree Copy of Highest diploma or certificate of enrollment 2 letters of recommendation TOEFL (80 IBT), TOEIC (785), or IELTS (6.0) **Motivation letter** #### **PROCESS** Submission of application, Validation of the candidacy, Online interview, Admission results #### **REQUIREMENTS** In M1: 3-year Bachelor of Engineering In M2: 4-year Bachelor of Engineering or higher FEES Application fees: 60€ Tuition fees: 12 595€ per year **DEADLINE** June 30 More information: ipsa.fr/en/master-of-science-aerospace-propulsion # BE THE CHANGE YOU WANT TO SEE IN THE INDUSTRY! | | TEACHING UNIT | MOD | ULE | |---|--|--|--| | SEMESTER 1
20 ECTS
Courses | Human Sciences and
languages | Intensive French language for Engineers Cultural Integration Workshop For foreign students, English for French-speaking students | | | | Engineering sciences | Systems Engineering – Innovation Introduction to 3D printing Numerical techniques for resolving PDEs Introduction to Mechanical vibrations and Structural Dynamics Fluid-Structures interactions | | | | Specialization | Climatic EngineeringFluid Dynamics | | | SEMESTER 2 40 ECTS Courses + 4-month of internship | Languages | French language for Engineers | | | | Engineering sciences | Quality – Regulation – Standards – Lean *optional Multiphysical systems graphical representation Basic principle of aircraft design and eco-design Flight mechanics : flying qualities | | | | Specialization | Fluid dynamics Power generation and hydrogen Theory pf plates and shells Numerical calculations in structural mechanics (FEM) | | | | Aeronautics and space | Design of turbomachinery Thermal engine for UAV Nuclear energy and propulsion Aeroacoustics initiation | | | | Professional integration | Internship informationInternship reportIndustrial Evaluation | | | SEMESTER 3
40 ECTS
Courses | Human Sciences, languages
and Professional
integration | French language for engineers *optional Human Factor and HMI – Risk analysis and safety Knowledge & integration in industrial environment Cybersecurity initiation Reliability: AMDEC methodology Project | | | | Specialization | Hypersonic aerodynamics introduction Vibration dynamics of plates and shells Reliability & fatigue of structures Airborn and ground payload Computational Fluid Dynamics (CFD) | | | | Aeronautics and space | Turbomachinery and design project
for a turbojet reactor Combustion Space propulsion systems Numerical calculations in heat transfer Aeroacoustics Turbulence | Electric and nuclear propulsion in spacecraft Launchers and Satellite design Conception of a space mission | | SEMESTER 4 20 ECTS 4 to 6 months of internship | | Thesis report Oral presentation Industrial evaluation | |